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Observations on the dynamics of the two-dimensional vortex 
gas on compact Riemann surfaces 

Achilles D Speliotopoulost and Hany L Morrison$§ 
T Institute of Physics. Academia Sinica, Nankang,'Taipi 11529. Republic of China 
$ Department of Physics, Univeniry of California, Berkeley, CA 94720, USA 

Received 9 February 1993 

Abstract. The dynamics and symmetries of the twc-dimensional vortex gas on compact Riemann 
Surfaces are analysed using Lagiansim dynamics. As the vortex Lagmngian is linear in the 
canonical momenta, Dirac's themy of conshainls is then used UI form the Hamiltonian dynamics 
for the system. 

1. Introduction 

In our previous paper [I] we have been mostly concerned with demonstrating the existence 
of vortex states in the excitation spectrum of two-dimensional 4He liquids. We now turn our 
attention to the analysis of the dynamical properties of the system by tmting the vortices as 
point particles moving on a general compact Riemann Surface. While much of this analysis 
will be done from the Lagrangian point of view, most of the interest in the two-dimensional 
vortex gas is due to the Kosterlitz-Thouless phase transition. What is then of applicational 
importance is not the Lagrangian formulation, but rather the Hamiltonian one, and we shall 
also be interested in the Hamiltonian description of the vortex dynamics. 

We caution the reader that what we are dealing with in this paper are quantum vortices 
which arise from the multiplicity of the phase of microscopic quantum mechanical field 11- 
for 4He atoms. The vortex Lagrangian will be obtained from the Lagrangian for the non- 
relativistic bose gas and not from any fluid-dynamical arguments. While a very fruitfull 
analogy may be made betyeen vortices arising from actual current flows in a liquid and 
vortices arising from the multiplicity of the phase of $r, this is only an analogy that need not 
necissarily hold in all cases. In fact, one of the aims of this paper is to present.a derivation 
and analysis of the quantum vortex gas which makes as little use of this analogy as possible. 
Another aim of this paper is to provide a systematic foundation for the dynamics of the 
two-dimensional vortex gas so that the statistical-mechanical properties of the system may 
be analysed. One cannot fully understand the statistical mechanics of a system until one 
has understood its dynamics. The gpnd-canonical ensemble cannot even be constructed 
until all the constants of the systems are known.'It is for this reason that we also include a 
discussion on the Hamiltonian dynamics of the vortex gas, particularly from Dirac's theory 
of constraints point of view. 

The rest of this paper is organized in the following manner. In-section 2 we present 
a derivation of the Lagrangian of  the^ two-dimensional vortex gas on arbitrary Reimann 
Surfaces. This is a generalization of our previous work [l]. In section 3 we formulate the 
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vortex phase space and in section 4 the constants of the motion for~the system are analysed. 
Finally, in section 5 ,  Dirac's theory of constraints is used to formulate the Hamiltonian 
dynamics of the system and its usefulness in the analysis of the Kosterlitz-Thouless phase 
transition is made clear. 

~A D Speliotopoulos and H L Morrison 

2. The Vortex Lagrangian 

Our starting point will be the functional integral 

Z =  D@D@texp (2.1) 1 
where L is the standard microscopic Lagrangian for a system of non-relativis- 
tic 4He atoms constrained to move on a two-dimensional manifold M 

With the replacement t is, 0 < r < f3, 2 becomes the partition function for the 4He 
atoms. F is any functional of the density and we have taken f i  = m = 1. The metric gab 
on M is considered to be given and fixed. 

The function @ is, as usual, a complex field representing the possible states of the 
helium atoms and is characterized mathematically as a section of a non-trivial complex line 
bundle over M. Although the functional integral in (2.1) is over all such Cm sections, 
standard techniques used in evaluating the integral do not take into account those fields 
which lie in the kernel of Laplace's operator, namely holomolphic and anti-holomolphic 
fields. As was shown in [I] it is precisely the integral over these fields which gives rise to 
the path integral for the two-dimensional vortex gas. For this reason we will usually take 
@ to be holomorphic in the rest of the paper. 

As we shall see, the vortex Lagrangian will come solely from the free Lagrangian 

and is independent of any specific choice for'F. We start by focusing our attention on the 
kinetic energy K part of 12,. Since F d k s  not contajn any gradient terms, the conserved 
current is still the I-form j = i(d@t @ - @td@)/Z. t the conservation equation, however, 
is now ?i = Sj where n and 6 is the co-exterior derivative. Following Dashen and 
Sharp [21, we write K & 

where p = n,&, &'A, dx2. 

Riemann Surface, its metric is simply dsz = 2g& @ dz where z 
f i  = 2g,i and K becomes 

Choose a~local coordinate system ( x ' . x z )  on a neighborhood of M. Since M is a 
(x' + i xz ) / f i .  Then 

K = (an-'a,nain+n-'j,ji)idzAdi (2.5) J, 
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where jz = ( j l  - ij?)/&. This is exactly the same as the free Hamiltonian for helium 
atoms on the plane. No reference to the metric of the surface is present. Moreover, for 
holomorphic, j = --6p/2 =+ n = 0 and IC has a remarkably simple form 

, 

K = a  n6qA*6q  (2.6) s, 
where q = lognfi idz A & .  . 

The Green's function for Laplace's,operator is introduce into (2.6) by using the H&ge 
decomposition theorem [3] which states that any p-form (Y may be decomposed into the 
sum of three pieces: '~ 

(2.7) 

X is a projection operator which maps (Y into the space of harmonic p-forms. As we are 
dealing with'the physical observables n and j, it suffices to consider the space of.global 
harmonic forms. Since the only harmonic form on a compact manifold without boundary is 
the constant form, the components of H [ a ]  are simply the spatial average of the components 
of a over M. 

G is Green's operator and its action on forms is as follows. We define the delta function 
on the surface as 

. .  

U: = dG[Sa] + GG[da] + H[a]. 
. ,  . 

f (z )  = s, f(w)sZ(z - w) idz A @ (2.8) 

for any function f .  For the 2-form ,9 = b(z),&idz A &  

where bo is the spatial average of b over the surface and @(z - w) = -log Iz - wI2/4a 
satisfies 

(2.10) --2azai@(z - w) = 8% - 

For the I-form c = c,dz + cidi 

G[c]= ( L [ c . , ( w )  -~,,,~}$&-w)~idwAdlir dz 

(2.11) 

where once again C,O is the spatial average arc,. The function &(z - w) is the solution of 
the partial differential equation 

1 
+ ( ~ i ~ ~ ( w ) - ~ , ~ } ~ i ( z - w ) i d ~ A d l i r  1 di 

- 2aZ(&'ai@J = 6% - w) (2.12) 

and is related to @(z - w) through the integral equation 

@ s z - W )  = z ~ a , $ ( u - w ) ~ a , $ ( U - z ) i d u A d u  (2.13) 

as can be readily verified. 
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The density is now decomposed into 

n = n o + - /  1 (,+-)idmAdLir a,n a,n 
4n M I - w  Z - w  

(2.14) 

while 6q becomes 

H[6q]  vanishes by Stoke’s theorem. Putting (2.14) and (2.15) into (2.6). we find that all 
the integrals over z become hivial and can be reduced into doing the single integral 

i d~ A (G = -h log I W  - u12. 
1 

Sm(w--z)(Li--17 
(2.16) 

Then returning to the free Lagrangian &, we obtain 

+ l //n(w)awa, logn sua, logn log lw - u12 idw A dLir idu A di4 

- l SJ n-la,na,n sua, logn log lw - ul’idw A d 5  idu A d i i .  

4n 

4n 
(2.17) 

At this point we make use of the following lemma from Gunning [4]. 

Lemma. Let t u p  he the bansition functions of a line bundle 6 subordinate to an open 
covering {Uu} of the compact manifold M. Suppose that {re} are nowhere vanishing Cm 
functions defined on U, satisfying 

r&) = Ita,dr,dp) (2.18) 

for a point p E Ua flu@. Then a,& logr,dz A di is a well defined 2-form on M and the 
chem class CO) of the line bundle is 

~ ( 6 )  = - a,a, log rdz Ad? . (2.19) 
2ni ‘ S  

Noticing that the density transforms in exactly the same way as r, we make the following 
identifications: 

N 
a,a, logn e=, 2n C q a s z ( z  - zU) (2.20) 

LIE I 

and 

(2.21) 
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where z' is the location of the vortex with Circulation qa and N is the total number of 
vortices. It should be stressed, however, that these identifications are for convenience only. 
We are not requiring that either the density or the phase of 16. have these properties. They 
are instead a signature of the non-tiviality of the complex line bundle. Notice moreover 
that the lemma, and thus the identifications, hold even when n is a constant. 

Using these identifications in (2.17). and labelling the Lagrangian for the vortex gas as 
.C, to avoid confusing it with the free Lagrangian for the 4He atoms, we obtain 

and 

From Dolbeault's Lemma [SI 

(2.22) 

(2.23) 

(2.24) 

By (n,&)m we mean the value of n f i  evaluated at z'. 
n.@idz A dZ. 

From the conservation equation ?i = Sj, i = 0. This ensures that the interaction Hamiltonian 
IC and, as we shall see later, the total vortex Hamiltonian Xv,  is timeindependent and 
conserved. The vortices themselves form a conserved, dynamical system and there is no 
exchange of energy between them and the underlying 4He fluid. The fluid density n is 
treated here as an all-pervasive external field. 

We now see that the form of the vortex Lagrangian, and consequently the very peculiar 
first-order vortex evolution equations, are inherited f" a natural choice. for the Lagrangian 
of the microscopic 4He atoms. Lie L, Lv is first-order in the canonical momenta and thus 
the vortex Hamiltonian X obtained from Lv is simply K. The first part of X is the vortex- 
vortex interaction Hamiltonian and contains the usual self-interaction piece. The second 
part is a vortexquasi-particle interaction Hamiltonian. Notice that when the density is 
constant, the second part of 'H vanishes and we are back to the original Kosterlitz-Thouless 
coulombic interaction. 

A few words should be said about L,, particularly about the form K takes. For constant 
n,  K reduces to the standard logarithmic interaction Hamiltonian for point vortices on the 
infinite plane. It thus has the same form independent of the specific choice of the manifold 
M, which is quite peculiar, and counter-intuitive. Note, however, that K comes from the 
free part of the 4He Hamiltonian (2.3) for which, as we have seen, the metric drops out 
completely (2.5). It is for this reason that no mention of the metric on M is left in (2.23). 
In our analysis we have implicitly mapped M onto the Reimann plane. The mebic does, 

For $ holomorphic, the microscopic 4He current j = --Sp/2 where p 



3532 

however, occur in L, since the velocity terms in the Lagrangian comes from the @tt). term 
in (2.3) for which & is still present We shall show in section 3 that there are choices of 
local coordinate systems for which this piece of the Lagrangian may also be mapped onto 
the Reimann plane. The analysis is somewhat more involved as the structure of the vortex 
phase space, which is related to the global properties of M, is determined from this term. 

A D Speliotopoulos and H L Morrison 

3. The vortex phase space 

Taking i7 as our generalized coordinate q", its canonical momenta pa are 

and the equations ofmotion are 

Let Gas = qu(n&,S,8/no where no is the spatial average of n over M. As we are 
dealing with liquid +He, we will require that n be nowhere vanishing on M. Since & 
is also nowhere vanishing, Gas is a Hermitian matrix with a well defined inverse for all 
zm. It is identified with the metric on the vortex phase space K, a Hermitian manifold with 
complex dimension N. 

The 2-form 

N 

U.&l 

@ i G,gdz' A dZB 

is the second fundamental form on K. Since 

(3.3) 

(3.4) 

it is also closed and K is a Kahler manifold with a natural symplectic structure. In particular, 
there exists a local coordinate system (w", tY) on K such that [5] 

N 
Q = i c q , d w '  A ~ ~ Z I ' ~  

U.B 

with the corresponding equations of motion 

(3.5) 

These, in the constant density limit, are Kirckofps equations for the motion of vortices on a 
plane [61. For any two differentiable finctions of z" and F, the Poisson bracket on K is 
then defined as 
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Let [Ua] be an open~covering of M such that za E U, but zm g Up for U # p. Define 
, .  on U& the local function 

On this open neighbourhood 

The Kahler potential G for K is defined as the formal sum 
N 

. ~ (3.9) 

(3.10) 

and is unique up to a holomorphic function in z'. The momentum canonical to q. is related 
to G by 

. .  
a 

~ a q  pa = -rnoi-G. (3.11) 

One~naively expects the phase space to have a simple product structure K = M x . .  . xM. 
Due to the presence of n in the metric Gap this, however, does not tum out to be the case. 
The fluid density also plays a role in determining the global structure of the phase space. 
Physically, this is interpreted as an indication that the vortices do not move on the surface 
of M but rather 'float' on top of the fluid. This effective surfaie 1M, that the vortices move 
on has the metric ds2 = 2ng,& @ di. Notice also that because 

the volume vol K of the phase space 

(3.12) 

(3.13) 

can' be defined and is finite as long as the volume of M is. The absolute value of n qe is 
taken to ensure that a consistent orientation is preserved thoughout the phase space and to 
ensure~that vol K is positive. . 

4. Symmetries'of .C,' 

Let h,(z") be a holomorphic function of z' only and consider the re-definition 

which changes 13, by a total derivative 
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As Lv is unique only up to a total derivative, pa is determined only up to a holomorphic 
function in zu. We shall call this freedom in choosing ha a gaugefreedom and we say that 
& is equivalent to p: if they differ by at most a choice of gauge. 

A. D Speliotopoulos and H L Morrison 

Next, consider the open covering {U,} of M defined in section 4. By definition, 

where 

(4.4) 

Since zm $ Up for (Y # p, each term in the sum on the right-hand side of (4.3) is a 
holomorphic function in za.  j., is then equivalent to palum. Similarly, given a different 
open covering (Vu] of M satisfying the same conditions outlined in section 3, pu1vm is also 
equivalent to palus. Because of the aforementioned gauge freedom, the vortex evolution 
equations are independent of the choice of the open covering of M. What is of physical 
relevance is not the specific form of pm but rather that it is a solution to the partial differential 
equation (2.25) on some open neighborhood U. containing the point z' E M. Such a 
solution is, of course, by no means unique, and this is the root cause of the above gauge 
freedom. 

To ensure that K is invariant under uniform roiations and translation, we will henceforth 
consider the case where n is a constant equal to 1/21?. 

M is a Kiihler manifold. As such about every point zo E M there exists an open 
neighborhood and the choice of a local coordinate system such that g,: = 1 + &E where 
&i vanishes to second order at 20: 

Since locally M behaves very much like the infinite plane (to second order), we expect 
1;. to be invariant under uniform rotations and infinitesimal translations (to second order) 
and, in fact, if we choose the coordinate system given in (3.5), we will of coume find the 
usual conserved charge8 given in Friedrichs [6]. By doing so, however, we would miss 
the behaviour of (2.22) under uniform scaling, which is very important in understanding 
the Kosterlitz-Thouless phase transition. We shall therefore take the time to re-derive the 
conserved charges from (2.22) by applying (4.5) piecemeal. The usually shltightforwd 
procedure of finding the corresponding conserved charges will, however, be complicated by 
the gauge freedom discussed above. 

We start with rotational invariance. Let w' = Az' where h is a complex number. We 
'fix' the gauge by requiring that pa be an eigenvector of the rotation operator 

which is non-singular at z' = 0 (see appendix). Such a pa still satisfies (2.25) and is a 
valid choice ofgauge. Requiring that the arc length on K be invariant: 

N N 
ds2 = cqamdza @ dl" = q a m d w a  @ dGa (4.7) 

a (I 
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we obtain 

m m=-. IAlz 
(4.8) 

Defining &(w") to be the solution to 

!!z(W") =- (4.9) 
awe 

and choosing the same gauge for &(wa) as for pa@'") with ZU + w' in (4.6). we obtain 

(4.10) F(z")  &(w") = - A 
using (2.25). The Lagrangian then changes by an additive constant 

(4.11) 

and the transformation z'I +.Azo. & + p./A is a symmetry of the system. Letting .A 
be time-dependent, we find the following conserved charges: 

which corresponds to pure rotations, and 

(4.12) 

which corresponds to pure scaling. Taking the derivatives of both I and i with respect 
to time, we find that while dljdl  requires the use of both (4.6) and the equations of 
motion (3.2) to vanish, d i j d  vanishes solely due to our choice of gauge. i is therefore 
not dynamical and is instead a 'gauge artefact' which can be set to zero identically (see 
Chapman [7] for a different approach to scaling). 

The charges I and i are conserved as long as (4.6) is a valid gauge choice. This only 
requires that for every point z E M there exists a choice of coordinate system such that g,? 
is rotationally invariant: 

z - - z -  g , i=o .  ( aaz -a,?> (4.14) 

This is a somewhat weaker requirement than the K&ler conditions listed in (4.5). A Kiihler 
manifold, of course, has this propexty. 

Considering now infinitesimal translations, let w" = zn + E where e is a complex 
number. We no longer need require that (4.6) holds. Using the same argument as the above 
for rotations, &(wn) = pe(z") up to a choice of gauge. Then L:[w", &I = CJz', pul 
and the system is invariant under translations (up to a total derivative). The corresponding 
conserved charges are 

(4.15) 
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We caution, however, that (4.15) is unique only up to a choice of gauge. In fact, using the 
equations of motion' we find that 

A D Speliotopoulos and H L Morrison 

d z  apu dzn - = xqn-- 
azu dt 

Taking the derivative of (2.25) and using (4.5) for zo = za, we find that 

so that 

for some holomorphic function h,. Then 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

-~ ~ ~ ~~~ 

and M is unique up to a holomorphic function which may be set to zero identically. 

must also satisfy (4.6). Setting a & / W  = 0, 
choice 

If we now require all four conserved charges be conserved simultaneously, then pc 
= ia since g&") = 1. With this gauge 

N N 

(4.20) 

,and i = 0. These are the usual expressions for the conserved charges for vortices on the 
infinite plane and are the most convenient form to use. Note also that when M is a toms, 
~a = 1 for all z E M and 6 is invariant under arbitraryfuite translations as long as the 
net 'charge' or 'circulation' Q = E," qi of the vortices vanishes. 

Turning our attention now to the generators of rotations and translation, we introduce 
the following infinite algebra of operators. First, the analogues of the Virasoro algebra for 
the vortex system 

where 1 is an integer. Next the functions 

(4.21) 

MO is just the net charge Q of the vortices while MI = M. They have the following 
commutation relations: 

[ T I , T m I = ( m - O T + m  IZ,MI=M [T,,Z'l=L4 

[TI, Mm1 =mMm+f  
(4.23) 

[ E .  4 1  =mD,+I. 
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As will be shown in the next section, the vortex Hamiltonian is simply IC. Using the identity 

1 

(ZU) '+ l  - (,B)'+l = (f - 26) C(f)'-k(,a)k (4.24) 
k=O 

we find that for 1 2 0 

while for l i -1 

(4.25) 

(4.26) 

and [T-,,IC] = 0. The infinite set A = ( E , M ,  M / , M ~ M , , Z ) , D ~ , K )  is then closed 
under .the action of E .  Corresponding to A there is the complex conjugate set 2 = 
(Tl ,  M ,  Mj, M'M,,,, 'D, D I ,  K) which is closed i d e r  the action of Fl. As M ;  D, and K 
are real functions, they are common to both. 

Remarks 

- - - -_ - - - 

( I )  If we had kept the self-interaction (a = p) term in IC, there would have been no 
need to introduce the functions D1. Indeed, D, is generated by operating E on D, a measure 
of the system's total self-energy. 

(2)  T-I is the generator of uniform translations. From (4.25) 

4i  [(To - To), IC] = 0 (4.27) 

while 

(4.28) 

so that linear combinations of TO and 70 ak the generators of rotations and scaling. For 
uniform translations and rotations we need only consider the fmife,  and closed subset 

(3) As is~well known, the operators 7'-I, To, and TI form a representation of the 4 2 )  
Lie algebra. If we add the infinite self-interaction (a = p )  piece to IC Bnd consider the 
case where MO, the net vortex charge, is zero, then this new K is invariant under su(2). 
Unfortunately to ensure closure the subset of A that we would have to work with is once 
again infinite: 

Retuming to the Lagran&an, the conserved charges corresponding to this new symmetry 
can be found in the usual manner. Let wc' = A / P .  Then &(wU) = -(z")2p,(z")/.h.. Using 
the conditions outlined above, L ~ [ w " ,  21 = L,[z", &] and the transforthation zc -+ h/zU 
is a symmetry of the Lagrangian. Taking A to be time-dependent, the corresponding 
conserved charges are once again I and f. Thus, although za -+ l /za is an additional 
symmetry of the system, no additional conserved charges are introduced. 

A,f (T-I, To, MO, MI, M:, Do, K) of A. 

= (T-I , To, TI, M ,  M!, K). 
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(4) Using (2.25) and the definition of the Gh1e.r potential (3.10). 9& = aG/az' up 
to a gauge choice. With the appropriate choice of gauge, the conserved charges may be 
expressed in terms of G by 

- 
M = [T-i, GI M =IT-,, GI 

(4.29) 

Because the Laplace operator commutes with TO and TO, gz: being rotationally invariant 
means that i(To-To)G/Z is the sum of a holomorphic and an anti-holomorphic function in 
the z%. This shows explicitly that i is 'pure gauge', and is a description of the underlying 
structure of M itself. The fact that it is conserved simply ensures that g,? will always be 
rotationally invariant. 

We end this section with a brief discussion of the discrete symmetries of Lv, namely 
parity, time reversal, and charge conjugation. In two dimensions, parity is the map 
'P : (xu,  yu) --+ (x", -ym) ,  or, equivalently, P : zm --f Z'. Because is a real 
function of za, from (2.25) we find that 'P : -+ pm.  T i e  reversal T : t 3 4. For 
charge conjugation C : 9u 4 -qu. we note that physically the 'charge' of a vortex may be 
interpreted as the circulation of a singular rotational flow field and thus depends implicitly 
on the handedness of the local coordinate system that we pick. Moreover, mathematically 
9a is identified with the first chem class c(E) of a holomorphic line bundle E above M. 
'P : E 3 E where E is the complex conjugate bundle, and, as c(E) = -@), we conclude 
that parity is equivalent to charge conjugation for the vortex system. Operating on Lv by P 
and T, we see that although Lv is nor invariant under the action of either P or 7 separately, 
it is invariant under the combined action of PT. This is the analogeous CPT operation for 
the vortex system. 

5. Dirac constraints 

Up to now we have mostly been concemed with the Lagrangian formulation of the vortex 
dynamics. As most of the interest in the two-dimensional vortex gas is due to the Kosterli* 
Thouless phase transition, in this section we will attempt to go from Lagrangian dynamics 
to Hamiltonian dynamics. The form of the vortex Lagrangian that we will be working with 
is 

where we have set = i" and performed an integration by parts. Taking once again 
i' as our generalized coordinate q" with canonical momentum pu = -iquzu we see 
that the Lagrangian is first-order in the momenta. Consequently, the vortex Hamiltonian 
E,, p,qe - L, is simply IC. More importantly, because of the conserved charges listed 
in (4.20). not all of the qm and pa are linearly independent. To address this problem, we 
use Dirac's theory of contrains [SI. 

The constraint equations are 
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The vortex Hamiltonian is augmented by a linear which are all weak constraints. 
combination of these constraints 

(5.3) 

where Vk are c-numbers which are determined by requiring that q5k be conserved under 7 . l ~  
as well as 31,. Using the Poisson bracket defined in (3.7). we obtain the following set of 
linearly dependent equations for Vk:  

VZQ + UOM = 0 v,Q + VOX? = 0 u,M - IJZZ = 0. (5.4) 

Defining U, = up where U is a real number, we find that U: = UM and vo = - v Q .  U is 
an arbitrary constant which cannot be determined and is due to the invariance of that part 
of the action corresponding to the free vortex Lagrangian to scaling oft. The Dirac bracket 
is defined in terms of the Poisson bracket by 

where 

are chosen so that the Dirac bracket is well defined even when Q = 0. The Dirac 
Hamiltonian is then 

At this point one may wonder about the usefulness of Dirac's formalism since when 
analysing the dynamics of a system of vortices one may always put in the constraint (5.2) 
by band. This is quite true. If, however, we wish to analyse the statistical-mechanical 
properties of this system, then the conserved charges of the dynamical system will play 
a major role. To formulate the grand-canonical ensemble for any dynamical system the 
constants of the motion are used to c o n s a t  the Boltzmann factor. To every conserved 
charge there is a Lagrange multiplier with the term which appears in the Boltzmann factor 
forthe vortex gas having the form p(K+, iCqeza  +A\q&++h,~q,lz,lZ). This is of 
exactly the same form as the D i m  Hamiltonian (5.7) up to an overall constant. Although 
the physical interpretations of these Lagrange multipliers are straightforward, A and being 
the componants of an external flow field while Ar is the vorticity of a flow field, the relative 
signs are not determined using the simple Lagrange multipier prescription, as it is using the 
Dirac Hamiltonian. Moreover, while Ar can be interpreted as a net vorticity, from (5.7) we 
see that this net vorticity must also include the internal vorticity of the system, namely that 
due to the vortices themselves. As such, even in the absence of an external flow field, a 
system with an odd number of vortices, all of charge f l ,  will have Q # 0. An additional 
term now appears in the Boltzmann factor which will change the statistics of the system 
dramatically. 

The Dirac formulation thus gives a systematic way of constructing the Bolmann factor 
for h e  vortex system. This is to be contrasted with the method that Kosterlitz and Thouless 
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first used in 191 to construct their ensemble. A uniform ‘electric field‘ E was introduced by 
hand and coupled linearly to the vortices by adding the term C q,E. r, to the coulombic 
interaction Hamiltonian. This was done so as to dcfine a ‘polarizability’ forthe system in the 
dipole phase of the phase transition which subsequently lead to one of the renormalization 
group equations. By defining Ex = ( M  + /a, Ey = i @ - M )  /a, we see that this 
term that Kosterlitz and Thouless put in using physical arguments arises quite naturally 
from the Dirac Hamiltonian. Moreover, up until recently there has not been a systematic 
derivation of the superfluid density that Nelson and Kosterlitz [lo] used in deriving the 
celebrated universal jump in superfluid density in two dimensions. This was done by 
Minnhagen and Warren [ 111 by using a linear response theory which coupled the motion of 
the vortices to a unifo-rm flow field and it also arises from that part of ‘Ho that is linear in 
z‘. Taking each Uu to be a circle now centred about the origin 
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exactly. Defining 

and ueXt = -iMdz + imdi, we obtain 

where vsf = xu$. In rectilinear coordinates, 

(5.10) 

(5.1 1) 

and was interpreted by Minnhagen and Wagner as the superfluid flow field from a vortex 
with charge qa. Then v,f is the net superfliud flow and was labelled by them as gs. vext is 
identified with the uniform flow they introduced. 

These additional pieces to the Boltzmann factor, which is not present in the standard 
renormalization group analysis of the phase transition, play a great role determining the 
properties of the system away from criticality. By using the Dirac Hamiltonian for U = -1 
for the general Kosterlitz-Thouless ensemble (in which the charges of the vortices can be 
any integer) it is shown in [ 121 that many of the properties of the system that were believed 
to be true about the phase transition actually were not. In particular, when Q = 0 we find 
that 

(~H)IM=o # lim (6H) (5.12) 
M-rO 

where 6H = -(M xqaIu + h? cqazcL) and the average was calculated using the grand 
partition function . :  

(5.13) 



Dynamics of two-dimensional vortex gas 3541 

and 

a is the length scale for the system while h(N.q)  and g ( N , q )  are the fugacity and 
multiplicity factors due to identical particles respectively. (Our notation and units here 
differ somewhat from the notation used in [12]). By (SH)IM=o we mean the average of 6 H  
where M = 0 identically. This is of course zero. The presence of 6H in (5.14) when M # 0 
breaks rotational symmetry of the vortices, z' + ei8zu, and the non-equality in (5.12) mean 
that the phase transition breaks a continuous rotational symmetry. This is in direct contrast 
to the Hohenberg-Mermin-Wagner theorem which states that there is no phase transition in 
two dimensions which breaks a continuous symmetry [13, 141. Moreover, it may also be 
shown that for the system to behave as a normal fluid above the transition temperature and 
a superfluid below it, there can be no vortices above the transition temperature, while there 
must be vortices below it. This is also in direct contrast with what is currently believed 
about the Korterlitz-Thouless phase transition. 
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Appendix 

What appears in the vortex evolution equations, and what is of physical relevance, is the 
metric g,; evaluated at the point zoI E M, not pa.  Unfortunately, what appears in .C, is pa ,  
not g,:. Although pm is related to g,? through (2.25), this is true for any metric g,i of M 
irrespective of any symmetries that the manifold may have. Suppose now that for every 
z E M there exists a choice of local coordinate about z such that (4.14) holds. For .Cy to 
be rotationally invariant, a specific pm must be found which reflects this symmetry. As we 
shall see, the most natural choice is (4.6). We start by outlining the following facts about 
the rotation operator. 

Fact 1 .  Let E be a Cm-function of z, I defined everywhere an open neighborhood U of 
a Riemann Surface M except, perhaps, at z = 0. Then E is an eigenvector of the rotation 
operator 

with eigenvalue e, a complex number, iff 

where f is any Cm function of IzI only, 
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Proof. Suppose that E is a eigenvector of R with eigenvalue e: 

A D Speliotopoulos and H L Morrison 

eE = R E .  (A3) 

Let ,y = 1zI.f = z/Z. Then 

aE e E = g -  a t  
and E = Y’’f(x) where f is any Cm function of x only. The converse follows 
straightforwady . 
F a d  2.  
eigenvalue -2. 

Fucr 3. 

If E is an eigenvector of R with eigenvalue e iff is an eigenvector of R with 

If E is an eigenvector of R with eigenvalue e, then 

is also an eigenvector of R with eigenvalue (e -1  + m).  

Proof. By induction. It is certainly true for I .  m = 0. Assume that it is true for 1 = r and 
m = s. Then 

Since 

[&.RI =- a 
az 

and the assertion is true for the first index 1. By the same argument, it also holds for the 
second index m, and we are done. 

The converse is not true in general. Take, as the simplest example, the case where 
a E/& = 1 which is an eigenvector of R with eigenvalue 0. Then E = z + E ( ? ) ,  where 
is any antiholomorphic function. E is an eigenvector of R with eigenvalue 1 iff h = 0. The 
degree to which it ’fails’ to be an eigenvector is the additional arbitrary antiholomorphic 
function. 

g,i is an eigenvector R with eigenvalue 0. For & to reflect this symmetry, we 
require that j u  be an eigenvector of R with eigenvalue -1. Such a Iju satisfies (2.25) 
by construction. From (A2) and (A.5). 

where k is any complex number. Requiring that pa be non-singular at z‘ = 0 uniquely 
defines Fa in terms of g,i and is completely determined by our gauge choice. 
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